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A B S T R A C T

Permeability is an important input to models of shallow magma ascent. It is a property that can exhibit
anisotropy in volcanic magmas, rocks and edifices. Here we show that some important features of perme-
ability anisotropy can be captured by a simple approach. The permeability of a layered medium can be
described by a function that takes into account the angle between the direction in which pressure gradient
acts, and the layering orientation. In the end-member case of flow parallel or perpendicular to the layering,
the permeability of the whole system reduces to the arithmetic or harmonic means of the permeabilities
of the constituent units, respectively. This implies that laboratory-scale measurements on homogeneous
constituent layers can be upscaled to an effective permeability of a larger, multi-layered unit or edifice,
including fractured systems. We outline the theoretical underpinning to these formulations, and provide
experimental permeability data measured on anisotropic volcanic materials in order to validate this result.
We show that this result implies that permeability parallel to layering or bedding must always be higher
than that measured perpendicular to layering. Moreover, we emphasise that the choice of averaging method
used to upscale permeability data on individual rock samples has important consequences for the validity
of the derived values. We anticipate that these points will help move towards more realistic models of pres-
sure evolution behaviour in volcanoes, and increase the utility of laboratory-derived data for volcano-scale
modelling.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It is well established that permeability—the capacity for fluid flow
through a porous or granular medium—is a fundamentally impor-
tant property influencing fluid pressure in volcanic systems (e.g.
Eichelberger et al., 1986; Melnik et al., 2005). Over the last three
decades, volcanic rock permeability has become an increasingly
prevalent parameter in the discussion of mechanisms for volcano
outgassing and—in turn—eruption dynamics. Since the work of
Eichelberger et al. (1986), numerous studies have examined the per-
meability of natural and synthetic volcanic materials representing
a wide variety of volcanic systems (e.g. Westrich and Eichelberger,
1994; Klug and Cashman, 1996; Mueller et al., 2005; Degruyter et al.,
2010; Kolzenburg et al., 2012; Ashwell et al., 2015; Heap et al., 2015;
Farquharson et al., 2015, 2016; Wadsworth et al., 2016; Kushnir et
al., 2016, 2017a, amongst many others).
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Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600
Rickenbacker Causeway, Miami, FL 33149-1031, USA.

E-mail address: james.farquharson@rsmas.miami.edu (J.I. Farquharson).

Measurements of the Darcian permeability on centimetric-scale
samples—whilst useful in their own right—do not necessarily reflect
the fluid flow characteristics of a volcanic edifice, geothermal reser-
voir, or any other large system under investigation. Indeed, the
ability to “upscale” rock physical properties merits consideration in
any case where the scale of measurement is smaller than that at
which the data are applied. For certain constitutive physical proper-
ties, upscaling is somewhat trivial. For example, the average porosity
0 of a system is simply the mean value of each of the porosities
of the constituent units, independent of any direction of interest,
which is to say that porosity is a scalar property. However many
rock physical properties are not scalars, and weighted averaging laws
that depend on the direction of interest become necessary in order
to incorporate measured data into system-scale models (e.g. Tidwell,
1996).

The ability to upscale permeability from the scale of laboratory
specimens to that of an outcrop, conduit, or volcanic edifice has
been a feature of recent research efforts (e.g. Heap and Kennedy,
2016; Farquharson et al., 2016, 2017b; Lamur et al., 2017) which
have sought to explain the influence of heterogeneities (such as frac-
tures) on the permeability of magma or edifice rock. The inclusion
of edifice or magma permeability as a variable parameter has helped
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move towards more realistic gas evolution models for volcanic
systems (Jaupart, 1998; Collombet, 2009; Collinson and Neuberg,
2012; Chevalier et al., 2017). The increased use of laboratory data in
numerical models (e.g. Chevalier et al., 2017) is valuable; neverthe-
less, it is important to note that as this trend continues, the choice
of averaging method is ever more critical for accurately transferring
data between scales (e.g. Tidwell, 1996). Indeed, this is commonly
acknowledged in studies associated with hydrocarbon exploration
and research (e.g. Cardwell et al., 1945; Christie et al., 2001; Pickup
et al., 2005), and sedimentology or studies of sedimentary basin
evolution (e.g. Gingras et al., 2012; Jensen et al., 1994).

One of the primary complexities involved in upscaling perme-
ability is the existence of significant anisotropy in the media under
investigation. Numerical modelling of groundwater flow in a vol-
canic edifice by Hurwitz et al. (2003) highlights that very slight
changes in permeability—and in particular, anisotropy thereof—can
result in significant changes in the elevation of the water table
within a volcanic edifice, as well as its internal thermal structure
and phase distribution. In turn this has consequences for the like-
lihood of slope failure, phreatic eruptions, lahar generation, and
other volcanic hazards, as well as the potential of a volcanic region
in terms of geothermal energy extraction and epithermal mineral-
isation. Anisotropy exists in volcanic systems at many scales, and
examples of the phenomenon are as myriad as its causes. Magma
properties evolve in space and time, resulting in spatially variable
crystal content (e.g. Caricchi et al., 2007; Vona et al., 2011; Chevrel
et al., 2013, 2015), porosity (e.g. Bagdassarov and Dingwell, 1992;
Farquharson et al., 2015, 2016; Wadsworth et al., 2017), and geo-
chemistry (e.g. Giordano et al., 2008). Magma is also buffeted by
variations in in-situ stress conditions and strain rate partitioning
(e.g. Papale, 1999; Gonnermann and Manga, 2003; Caricchi et al.,
2007) within the volcanic conduit—processes that continue during
extrusion and emplacement (e.g. Smith et al., 2001; Cashman et al.,
2008).

During the ascent, evolution, and eventual emplacement of
magma, a host of heterogeneities can form and grow due to mech-
anisms such as tensile fracturing, partial or complete healing of
fractures, cavitation, or inhomogeneous bubble expansion and col-
lapse. Ultimately, this can result in anisotropy on the micro-scale
(Farquharson et al., 2016). Fig. 1A shows an example of this, where
magmatic processes (fracturing and partial sintering) have resulted
in planar heterogeneities in an andesitic lava.

Syn- and post-emplacement processes may also contribute sig-
nificantly to the development of anisotropy in volcanic systems. Fall
deposits often exhibit well-defined bedding (e.g. Wilson and Hil-
dreth, 1997), with individual laminae occurring on the centimetric-
scale and smaller. Fig. 1B shows finely bedded ash from Whakaari,
New Zealand. In this example, discrete laminae tend be less than
10 mm in thickness. Pyroclastic flow phenomena may often sedi-
ment layered deposits as a result of sequential or coeval deposition
in the tractional regime, or due to fluidisation, elutriation, and sed-
imentation processes occurring during and after their emplacement
(e.g. Wilson and Hildreth, 1997; Walker et al., 1981; Wilson, 1985;
Schumacher and Schmincke, 1990). Such deposits may also undergo
syn- or post-emplacement densification and/or sintering (e.g. Michol
et al., 2008). Fig. 1C shows the spectacular example of the Taupō
Ignimbrite (New Zealand). Reworking of volcaniclastic deposits may
also yield stratified structures, for example by lahars (e.g. Pierson et
al., 1990; Douillet et al., 2013) or through aeolian remobilisation (e.g.
Iriondo and Kröhling, 2007).

On a larger scale, the sequential superposition of lavas (e.g.
Applegarth et al., 2010), often interbedded with fall deposits, is
ultimately responsible for constructing massive portions of a vol-
canic edifice. Indeed, the very definition of a stratovolcano implies
anisotropy, in that a typical edifice is built up layers of volcanic mate-
rial emplaced with a bedding orientation. Fig. 1D shows an example

Fig. 1. Layering in volcanic environments over different scales. [A] Microstructural
anisotropy in banded andesite from Volcán de Colima, Mexico (Farquharson et al.,
2016). Scalebar is approximate, due to the “fisheye” effect at this magnification. [B]
Finely bedded ash at Whakaari (White Island), New Zealand. Scale is approximate.
[C] Layers of the Taupō Ignimbrite, New Zealand. Photo credit: Mike Heap. Spade for
scale. [D] Tongariro Trig andesite lavas, photographed looking north from Red Crater
towards Te Maari, Tongariro National Park, New Zealand.

of exposed strata, resulting from emplacement of massive lavas in the
Tongariro Volcanic Centre (New Zealand).

Laboratory measurements of permeability on volcanic media
often reflect this anisotropy, with the obtained value of permeability
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depending on the orientation of the sample with respect to sample-
scale heterogeneities. Heap et al. (2017a) show measurements of ash
tuffs containing gas elutriation pipes, and note that permeability was
generally (though not always) higher when fluid flow was parallel
to the pipe orientation. Kendrick et al. (2014) found that the per-
meability of pseudotachylyte-bearing andesite from Soufrière Hills
volcano was approximately three orders of magnitude lower when
the sample was prepared perpendicular to the pseudotachylyte vein
relative to a sample cored parallel to the vein. Similar magnitudes
were reported by Okumura et al. (2009) who measured experimen-
tally deformed rhyolitic melts perpendicular and parallel to shear
induced through torsional deformation. Gaunt et al. (2014) measured
permeability of samples from the marginal shear zone of the 2004–
2008 lava dome at Mount St. Helens (USA), reporting permeability
anisotropy of up to almost four orders of magnitude for sheared
dacite and fault gouge. Wright et al. (2006, 2009) measured the
permeability of suites of tube pumice—pumice containing a porous
network of highly elongate bubbles with a preferred orientation—
and noted the permeability was up to around two orders of magni-
tude higher when measured parallel to bubble elongation relative to
samples prepared perpendicular to this. Additionally, Wright et al.
(2009), by preparing and measuring samples at intermediate angles
with respect to the bubble orientation, show that permeability of
tube pumice is sensitive to the angle of anisotropy relative to the
direction of imposed fluid flow.

Permeability of an anisotropic medium is often termed
“equivalent” permeability, here 〈k〉, so-called because an anisotropic
medium will have a permeability that is hydraulically equivalent to a
conceptual homogeneous system (Freeze and Cherry, 1979; Renard
and De Marsily, 1997). In this contribution, we outline the derivation
of this property, and demonstrate—through theory and experiment—
that the value of permeability differs with respect to the orientation
relative to layering. Finally, we outline the importance of these
observations in the context of modelling volcanic systems.

2. Theoretical background: permeability

Darcy’s law (Darcy, 1856) is the constitutive equation govern-
ing fluid transport in porous or granular media in the low-Reynolds
number regime. Originally derived from experiments performed
by Henry Darcy in the 1850s, the theoretical framework of fluid
transport—which is based on Newton’s second law—has been well
established and expanded in the years since.

At a constant elevation, Darcy’s law is a proportional relationship
between the steady-state discharge rate Q of a fluid of viscosity l

through a porous medium with cross-sectional area A. Flow is driven
over a length L towards the low pressure region down a local pres-
sure gradient ∇p. In the laboratory, the pressure gradient driving
flow can be approximated as linear over the length L, and so this is
defined as the pressure difference between a point of relatively high
pressure pb towards a point of relatively low pressure pa. The value
of this pressure gradient pb − pa is given as Dp. In this case, Darcy’s
law is

Q = − kA
l

pb − pa

L
or Q = − kA

l

Dp
L

(1)

where Q is in units of m3 s−1. We can divide both sides of the
equation by the area A, giving a more general notation:

q = − k
l

∇p (2)

where q is the discharge per unit area—also referred to as flux or
Darcy velocity—in units of m s−1 (the velocity of fluid flow v through
the porosity 0 of the medium is related to the flux by v = q/0.)

The term ∇p is the pressure gradient, equivalent to Dp/L for small L
and thus has units of Pa m−1. For the sake of clarity, we drop formal
vector notation throughout the remainder of this contribution.

2.1. Flow in three dimensions

In three dimensions, the initial Darcy velocity is resolved in three
orthogonal directions in a Cartesian coordinate system x, y, and z,
giving qx, qy, and qz. Fundamentally. each of these components may
exhibit a rate of change, which will depend on the direction in which
the change is occurring. The difference between the velocity at any
two given points is described by nine components which correspond
to each of the directions x, y, and z. Thus

qx = − kxx

l
∇pxx − kxy

l
∇pxy − kxz

l
∇pxz (3a)

qy = − kyx

l
∇pyx − kyy

l
∇pyy − kyz

l
∇pyz (3b)

qz = − kzx

l
∇pzx − kzy

l
∇pzy − kzz

l
∇pzz (3c)

2.2. Introducing anisotropy

Eqs. (3a)–(3c) highlight that permeability—in the most general
case—similarly comprises nine components. Permeability at any
given point may be expressed by k = k(h), where h is the angle
between the horizontal plane and the direction of a measurement
of permeability. There exists a mutually orthogonal set of directions
where the angle h corresponds to the maximum and minimum val-
ues of k: these are termed the “principal directions of anisotropy”
(e.g. Renard et al., 2001).

If we array these components in a matrix, permeability becomes
a symmetric second-rank tensor, known as the permeability tensor
(Neuman, 1977):

〈k〉 =

⎡
⎣ kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

⎤
⎦ (4)

where each kij component corresponds to the coordinates in a
Cartesian system. However, it is generally sufficient to assume that
the xyz coordinate axes coincide with the principal directions of
anisotropy. It follows that we lose the off-diagonal components:
kxy = kxz = kyx = kyz = kzx = kzy = 0 (Neuman, 1977;
Nabovati et al., 2009), giving us

〈k〉 =

⎡
⎣ kxx 0 0

0 kyy 0
0 0 kzz

⎤
⎦ . (5)

Moreover, if we consider an anisotropic formation comprised
of homogeneous layers—what we can refer to as a transversely
isotropic layered medium—then we have kxx = kyy �= kzz. Fig. 2
illustrates such a conceptual layered medium.

In what follows we will present the analytical result for flow rate,
and equivalent permeability, in the principal directions: (1) where
the pressure gradient is acting parallel to the orientation of the lay-
ering, and (2) where the pressure gradient is acting perpendicular to
the orientation of the layering. Then we will present a transforma-
tion for the permeability tensor that permits the calculation of the
equivalent permeability in any orientation of interest.

Let us assume that each of the layers in the anisotropic system of
dimensions L × L × L (Fig. 2) is itself homogeneous in terms of its
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Fig. 2. A layered medium. Each of the layers constitutes a homogeneous unit with a
width wi and permeability ki . Orientation of layers is such that they are parallel to x
and y, and perpendicular to the z direction. 〈kx〉 and 〈kz〉 correspond to the permeability
of the (entire) layered medium parallel and perpendicular to layering, respectively.

physical properties. Each layer has a given width w1, w2, w3, . . . , wn,
where n is the total number of layers in the system. The total thick-
ness of the system L may thus be given by the sum of all the layer
widths:

L =
n∑

i=1

wi (6)

where wi refers to the incremental layer width from i = 1 to n.
Further, each layer has an isotropic permeability k1, k2, k3, . . . , kn.

3. Flow parallel to layering

When flow is parallel to the layering, each of the layers will have
certain properties in common. Specifically, the length over which the
pressure gradient occurs, the magnitude of the pressure gradient,
and the fluid viscosity, will all be identical.

The bulk flow rate Q, however, will be partitioned over layers with
widths w1, w2, w3, . . . , wn such that their areas amount to the total
cross-sectional area: a1 + a2 + a3 + · · · + an = A. So, if i cor-
responds to a given layer, it is clear that Q =

∑n
i=1 Qi (where Qi is

the flow rate through layer i) and A =
∑n

i=1 ai. Equivalently we can
decompose the area into its constituent width wi and length l com-
ponents, giving: A =

∑n
i=1 wil. With these points in mind, we may

now re-interrogate Darcy’s law (Eq. (1)) leading us to

Q1 =
k1w1lDp

lL
, Q2 =

k2w2lDp
lL

, Q3 =
k3w3lDp

lL
, . . . , Qn =

knwnlDp
lL

.

(7)

The equivalent permeability 〈kx〉 corresponds to the total flow
rate (the summation of flow rates through all individual layers), thus

Q �
n∑

i=1

Qi =
〈kx〉ADp

lL

=
(

k1w1lDp
lL

+
k2w2lDp

lL
+

k3w3lDp
lL

+ · · · +
knwnlDp

lL

)
, (8)

which simplifies and rearranges to

〈kx〉 =
∑n

i=1 wiki

L
. (9)

Eq. (9) is the “arithmetic mean” permeability, a weighted average
dominated by the layers of highest permeability.

4. Flow perpendicular to layering

If we consider flow perpendicular to layering (i.e. flow in series,
to draw an analogy with electrical circuits), then the volumetric flow
rate Q must be equal entering and exiting the system. However,
the overall pressure differential Dp is partitioned between layers of
thickness w1, w2, w3, . . . , wn, becoming Dp1, Dp2, Dp3, . . . ,Dpn. And
so

Dp1 =
Qlw1

k1A
,Dp2 =

Qlw2

k2A
,Dp3 =

Qlw3

k3A
, . . . ,Dpn =

Qlwn

knA
(10)

In this case, the equivalent permeability 〈kz〉 corresponds to the
total pressure differential (the summation of pressure drops across
all individual layers), thus

Dp �
n∑

i=1

Dpi =
QlL
〈kz〉A =

(
Qlw1

k1A
+

Qlw2

k2A
+

Qlw3

k3A
+ · · · +

Qlwn

knA

)
(11)

which rearranges and simplifies to

〈kz〉 =
L∑n

i=1
wi
ki

or 〈kz〉 =
∑n

i=1 wi∑n
i=1

wi
ki

(12)

Eq. (12) is the “harmonic mean” permeability, a weighted aver-
age dominated by the layers of lowest permeability. As highlighted
in Appendix A, it is assumed that all observations are positive real
numbers: in practice, this means that the harmonic mean approach
is valid as long as there are no wholly impermeable layers in the
system.

5. Permeability in heterogeneous systems

Eqs. (9) and 12) correspond to the maximum and minimum
equivalent permeabilities within a layered system, so it is to be
expected that the equivalent permeability of any heterogeneous sys-
tem will fall between these end-member values (e.g. Cardwell et al.,
1945). For example, a commonly employed averaging method is the
geometric mean:

〈kg〉 =

[
n∏

i=1

kwi
i

]1/L

(13)
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which may be particularly useful for a case where the orientation is
not strictly known.

Computational modelling (Warren and Price, 1961) has been used
to show that 〈kg〉 can provide a good representation of the equivalent
permeability of a random heterogeneous medium. Nevertheless, care
should be taken when applying the geometric mean equivalent per-
meability to highly heterogeneous systems (Jensen, 1991). A notable
issue is that 〈kg〉 → 0 when any of the constituent layers are close
to impermeable, and unphysical values may be derived. Neverthe-
less, Jensen (1991)—based on theoretical approaches by Bakr et al.
(1978), Gutjahr et al. (1978), Dagan (1979, 1981) amongst others—
highlights that the geometric mean approach is a suitable means
of assessing equivalent permeability if the measured permeabilities
k1, k2, k3, . . . , kn are log-normally distributed and display low vari-
ance. Jensen (1991) also introduces an approach termed the “jth
Winsorized mean”, which involves removing so-called extreme val-
ues of ki and replacing them with adjacently ranked data, prior to
calculating 〈kg〉.

For typical systems 〈kx〉 > 〈kg〉 > 〈kz〉; indeed, for any given set
of wi and ki, we can assert that 〈kx〉 is greater than 〈kz〉 (i.e. perme-
ability parallel to layering in a natural system is always higher than
permeability perpendicular to layering). A simple proof is offered in
Appendix A, and we demonstrate this experimentally in the follow-
ing section. Each of the averaging approaches discussed here are spe-
cial cases of power-law averaging, a general analytical function. More
complex power-law approaches have been employed to estimate
hydraulic conductivity in previous studies, typically relating the con-
ductivity of a system to the spatial correlation (or the degree thereof)
of individual, variably permeable units. Such methods include spatial
averaging (e.g. Deutsch, 1989) and renormalisation averaging (e.g.
Piggott and Elsworth, 1992), but shall not be discussed further in this
study.

In the context of upscaling permeability to applied systems, it is
worth noting that these relatively simple averaging approaches may
be further expanded in order to account for more complex system
geometries. Both arithmetic and harmonic permeabilities may be
applied to layered radial flow systems, for example, which could con-
ceivably be of importance in volcanic and geothermal systems. In the
first instance, fluid transport parallel to layering in a system of lay-
ered disks can be described by Eq. (9) without modification (Fig. 3A).
Fluid transport perpendicular to layering in a system of annular units
concentric to a central bore (representing a volcanic conduit or a
geothermal well, for example) can be described by a modification of
the harmonic average approach. In such a case, permeability must be
weighted according to the distances of each concentric unit from the
central point (e.g. Cardwell et al., 1945), therefore

〈kr〉 = ln
(

ra

rb

) n∑
i=1

[
ln

(
ri

ri−1

)
k−1

i

]−1

. (14)

ra and rb are the central bore radius and the far-field radius,
respectively. Values of ri represent the incremental concentric radii
of annular units. This is illustrated in Fig. 3B.

There are numerous scenarios wherein a volcanic edifice could
be reasonably and usefully conceived as a transversely isotropic
layered medium as illustrated in Fig. 3A. Stratovolcanoes are con-
structed from heterogeneous layers of eruptive material—which may
possess distinct physical and mechanical properties (Gudmundsson
and Brenner, 2004)—and are often modelled as such (e.g. Bakker
et al., 2016). It has been observed that permeability may differ
markedly depending on the subsurface stratigraphy (e.g. Watanabe
et al., 2008). Indeed, even in a mechanically and compositionally
homogeneous volcanic rock mass, permeability may be influenced
by lithostatic pressure, effectively creating isobaric strata of differing

Fig. 3. Schematics of simple three-dimensional systems. [A] A system of layered
disks, each with width w1, w2, . . . , wn and corresponding values of permeability. [B]
A concentric annular system, where layers are described by their radii (e.g. r1, r2, r3:
inset) with respect to the radii defining the system (ra , rb): those of the inner bore
and the far-field radius, respectively. Cartoons highlight how these geometries could
be applied to idealised volcanic systems. We emphasise that each cartoon represents
a reductive simplification of a real volcanic system, with the schematics in the lower
part of [A] and [B] representing the abstracted version of horizontally or vertically
layered systems, respectively, presenting them in a more mathematically tractable
form.

permeability. This is supported by experiments by Nara et al. (2011),
amongst others.

Equally, there are circumstances where the permeability pro-
file of a volcanic edifice may be imagined as an annular concentric
structure (i.e. Fig. 3B). Shear in volcanic conduits is often posited
to give rise to conduit-parallel strain localisation (e.g. Gonnermann
and Manga, 2003; Tuffen and Dingwell, 2005; Plail et al., 2014). In
turn, strain localisation in magma can influence permeability (e.g.
Okumura et al., 2013; Farquharson et al., 2016). Further, volcano
modelling (for example by Hurwitz et al., 2003; Lillis et al., 2015;
Schauroth et al., 2016; Bakker et al., 2016; Heap et al., 2017b) often
assumes a radial thermal gradient from the conduit into the edifice,
a parameter which has been shown to influence permeability and
permeability evolution (Gaunt et al., 2016; Kushnir et al., 2017b).

6. Calculating the equivalent permeability in layered systems at
arbitrary angles relative to the fluid flow direction

In the above analysis, we have given the scaled solution for the
equivalent permeability of a layered medium for the cases where the
fluid flow is parallel to layering orientation, 〈kx〉, and when the fluid
flow is perpendicular to the layering orientation, 〈kz〉. These repre-
sent the principal solutions, and allow us to write the permeability
tensor as

〈k〉 =

⎡
⎣ 〈kx〉 0 0

0 〈ky〉 0
0 0 〈kz〉

⎤
⎦ (15)
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where we assume that both possible parallel directions are equal.
The assumption of a transversely layered system (i.e. kx = ky) allows
us to effectively reduce the permeability tensor to a 2D version as

〈k〉 =
[ 〈kx〉 0

0 〈kz〉
]
. (16)

We can calculate the changes to the permeability tensor in Eq. (16)
when the coordinate system is rotated by an angle h. This effectively
changes our xyz coordinate system to a new coordinate system,
which we will term x̄ȳz̄. To do this, we must define a transformation
matrix for rotation of the Cartesian coordinates as follows:

[
x
z

]
=

[
cos (h) sin (h)

− sin (h) cos (h)

]
.

[
x̄
z̄

]
(17)

which, when applied to Eq. (16), yields a rotation of the tensor of
the form

〈k〉 =
[

ka kb

kc kd

]
(18)

where ka = 〈kx〉sin2(h) + 〈kz〉cos2(h), kb = kc = [〈kx〉 −
〈kz〉]cos(h)sin(h), and kd = 〈kx〉cos2(h) + 〈kz〉sin2(h). The choice of
whether to use ka or kd depends on whether h is measured from
a horizontal or a vertical plane. Assuming the horizontal case, the
result for fluid flow in a given direction, for which the layering is
oriented at the angle h from the x direction, gives the equivalent
permeability of the system as kd as follows:

〈k〉 = 〈kz〉sin2
(h) + 〈kx〉cos2 (h) (19)

which has the desirable result that when h = 0, 〈k〉 = 〈kx〉, and
when h = p/2, 〈k〉 = 〈kz〉. We note that it does not especially matter
whether one uses ka or kd to define this, so long as the measurement
of h is adjusted accordingly. This result is of wide utility to volcanic
scenarios in which the orientation of layering or fractures may be
oblique to a principal flow direction for the permeating fluid, and
provides a simple method to account for that situation. Moreover,
it highlights that 〈kx〉 and 〈kz〉 require determination, presumably in
the laboratory by measuring a suite of homogeneous rock samples
that make up the constituent layers.

7. Anisotropy in natural volcanic samples

In the previous section we emphasise three separate but related
points. First, we introduce the idea that permeability of a layered
medium is always highest when measured parallel to its layering,
and lowest when measured perpendicular. Second, we highlight that
there are numerous weighted averaging methods which could fea-
sibly be applied to permeability data measured on volcanic rocks at
the laboratory scale in order to describe the system as a whole (i.e. on
the edifice or conduit scale). We have focussed on three of these (the
arithmetic, harmonic, and geometric means) with the idea that each
most appropriately represents a different anisotropic configuration.
Third, we provide a solution for the permeability at any arbitrary
angle of the layering relative to the fluid flow direction by transform-
ing the coordinate system, thus rotating the tensor and recomputing
the permeabilities of each component.

The following subsections validate these concepts using measure-
ments on natural volcanic materials. Note that the sample suites
shown and discussed in the following sections exhibit significant dif-
ferences in terms of their physical properties and the expression of

their sample-scale heterogeneities, a function of their differing ori-
gins. Rather than being comparative, these discrete case studies are
illustrative of the points described above.

7.1. Soufrière Hills volcano banded pumice

We state that permeability parallel to layering must be greater
than permeability perpendicular to layering. To demonstrate this,
we provide measurements of permeability for a suite of variably
banded pumice samples. The samples were cored from a single block,
collected from the Belham River Valley on the island of Montser-
rat during a field campaign in 2012. The block is estimated to be
derived from the 11 February 2010 partial collapse of the Soufrière
Hills volcano dome, as described by Stinton et al. (2014). This block
was selected because it demonstrates centimetric-scale banding,
such that the derived samples exhibit relatively regular layering of
lighter- and darker-coloured material (Fig. 4). Similarly heteroge-
neous pumice was noted following the 1997 explosive eruption of
Soufrière Hills volcano by Burgisser et al. (2010) and others, as well as
in other explosive volcanic environments around the globe (Venezky
and Rutherford, 1997; Hall et al., 1999; Kennedy et al., 2005; Bouvet
de la Maisonneuve et al., 2009; Farquharson et al., 2016). Whilst we
presume the bands originated in the block of this study due to inho-
mogeneous bubble expansion or compaction whilst still deforming
viscously prior to emplacement (e.g. Farquharson et al., 2016)—as a
result of the complex decompression mechanisms associated with
the 2011 dome collapse—we note that banding in pumice has been
variously attributed to magma mingling (Venezky and Rutherford,
1997; Bouvet de la Maisonneuve et al., 2009), variations in magma
differentiation (Hall et al., 1999), or variability in dissolved water
content (Burgisser et al., 2010) as well as inhomogeneous bubble
extension processes. Ultimately however, sleuthing out the physical
mechanisms that generated the observed banding is not necessary
for the analysis that follows. We highlight that we consider each
sample as a medium composed of discrete layers, with each layer
corresponding to a separate band.

Samples were prepared such that they had diameters of 20 mm
and were nominally 40 mm in length (samples are shown in Fig. 4).
Connected gas porosity 0 was determined using helium pycnome-
try, and permeability was measured using a steady-state benchtop
permeameter (see Heap and Kennedy, 2016; Farquharson et al.,
2016, for a schematic). Uncertainty on the determination of poros-
ity arises from (a) the precision of repeat automated pycnometry
measurements and (b) error due to manual measurement of sam-
ple dimensions. Repeat measurements allow an estimation of error
in the length and diameter, which typically amount to <0.05 cm3 in
terms of volume. This corresponds to an average uncertainty on the
porosity data of ±0.004, with a maximum of ±0.009 (see Farquhar-
son et al., 2017a, for details). Uncertainty on the determination of
permeability is estimated to be ±1%, and thus always falls within
the symbol size when plotted graphically. Full details are provided
in Appendix B. Table 1 displays the porosity and permeability data of
the 20 samples.

Permeability is plotted against connected gas porosity for the
Soufrière Hills volcano samples in Fig. 5. Clearly, the samples exhibit-
ing layering parallel and perpendicular to the sample axis (and thus
the direction of measurement: 〈kx〉 and 〈kz〉, respectively) comprise
two distinct families on the graph, with the former tending to exhibit
relatively higher permeability. The degree of scatter in these data is
presumably a function of the naturally variable volume and geom-
etry of the bands within the sample suite (as evident in Fig. 4).
Nevertheless, these data highlight that permeability may vary sig-
nificantly when anisotropy is investigated. For example, samples
SHV-X-8 and SHV-Z-3, which have the same connected porosity
(0.34) but were obtained and measured in orthogonal directions,
differ by a factor of 5 in terms of their permeability (Table 1, Fig. 5).
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Fig. 4. Soufrière Hills volcano pumice samples. Note the alternating bands of lighter and darker colour evident in the samples (discussed further in the text). In this sample suite,
the bands are variably anastamosing and sometimes diffuse, making accurate determination of their geometry non-trivial. Samples Z-1–Z-9 exhibit banding perpendicular to the
sample axis. Samples X-1–X-11 exhibit banding parallel to the sample axis. Sample Z-5 could not be photographed.

7.2. Volcán de Colima flow-banded lava

Three permeability weighted averaging methods have been
advanced in the preceding sections: arithmetic, harmonic, and geo-
metric means (Eqs. (9), (12), and (13), respectively), with the asser-
tion that they should best describe certain layered systems. To verify
this, we use permeability data from cores of a flow-banded lava block
collected from “El Volcancito”, a parasitic dome on the north-eastern
flank of Volcán de Colima, Mexico (see Farquharson et al., 2016,
for more information). The initial block was a dense lava exhibiting
meso-scale anisotropy whereby half of the block appeared dark grey
in colour and the other half was visibly lighter in colour (see Fig. 6:
inset). Farquharson et al. (2016) prepared samples cored parallel and
perpendicular to the interface between the two textures, including
samples encompassing the interface in either orientation (Fig. 6).

Sample preparation and measurement were performed as
described in the preceding section and Appendix B; however, the
Forchheimer correction was not necessary for these data.

Due to the relatively simple geometry of the sample-scale hetero-
geneities, this sample suite can be used to assess the validity of the
three permeability averaging approaches. For the layered samples

Table 1
Connected porosity 0 and permeability k data for 20 Soufrière Hills volcano banded
pumice samples. Permeability was measured parallel ‖ or perpendicular ⊥ to banding.

Sample 0 k [m2] Orientation

SHV-X-1 0.32 1.10 × 10−12 ‖
SHV-X-2 0.33 2.41 × 10−13 ‖
SHV-X-3 0.33 1.06 × 10−12 ‖
SHV-X-4 0.32 9.15 × 10−13 ‖
SHV-X-5 0.32 4.07 × 10−13 ‖
SHV-X-6 0.32 4.43 × 10−13 ‖
SHV-X-7 0.33 7.18 × 10−13 ‖
SHV-X-8 0.34 1.73 × 10−12 ‖
SHV-X-9 0.34 1.69 × 10−12 ‖
SHV-X-10 0.34 1.31 × 10−12 ‖
SHV-X-11 0.33 4.30 × 10−13 ‖
SHV-Z-1 0.30 1.07 × 10−13 ⊥
SHV-Z-2 0.32 1.74 × 10−13 ⊥
SHV-Z-3 0.34 3.63 × 10−13 ⊥
SHV-Z-4 0.30 2.01 × 10−13 ⊥
SHV-Z-5 0.31 1.64 × 10−13 ⊥
SHV-Z-6 0.30 2.35 × 10−13 ⊥
SHV-Z-7 0.31 1.41 × 10−13 ⊥
SHV-Z-8 0.30 3.02 × 10−13 ⊥
SHV-Z-9 0.31 2.16 × 10−13 ⊥

in either orientation, it should be possible to calculate their equiv-
alent permeability 〈k〉 given knowledge of the width (or area, as
appropriate) of either layer and their respective permeabilities.

Fig. 5. Connected porosity and equivalent permeability data for volcanic samples
cored parallel (green symbols) and perpendicular (yellow symbols) to sample-scale
heterogeneities. Circles indicate Soufrière Hills volcano (SHV) banded pumice samples
(see Table 1, Fig. 4). Note that the samples cored parallel to banding tend to exhibit
higher permeabilities than those cored perpendicular, by up to around half an order
of magnitude for the same porosity. Inset shows the Soufrière Hills volcano along-
side samples of andesite exhibiting sample-scale anisotropy, collected from Volcán
de Colima (Mexico). These data are discussed in more detail in the following section.
Error calculation for porosity data is described in Farquharson et al. (2017a): for these
data the average uncertainty is ±0.004, with a maximum of ±0.009. Maximum uncer-
tainty on permeability data is ±1%, which is smaller than the symbol size. Details on
the calculation of uncertainty for permeability data are given in Appendix B.
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Fig. 6. Samples of Col-V-5 in z and x directions. [A] Three samples were cored in the
z direction in the manner shown. [B] Three samples were cored in the x direction, as
indicated in the sketch. The initial block is shown in inset. Permeability measured in
the direction of the dashed arrow in either case. See Farquharson et al. (2016) for more
information.

Fig. 6 shows the six samples discussed in this section. For the sam-
ples cored in the z direction (Fig. 6A), the permeabilities of the dark-
and light-grey parts of the block are referred to as k1 and k2, respec-
tively. The permeability of the layered sample shall be given as 〈k⊥〉:
a function of the ratio of thickness of either component (w1 and w2),
which were measured with digital callipers (Table 2). Similarly, for
the samples cored in the x direction (Fig. 6B), the permeabilities of
the dark- and light-grey parts of the block are referred to as k3 and
k4, respectively, and the equivalent permeability of the sample shall
be referred to as k‖. Due to the cylindrical geometry of the samples,
we cannot simply use the w3 and w4 dimensions (Fig. 6B). Instead,
we use the average cross-sectional area of each component (dark
grey vs. light grey), which we present in Table 2 as a3 and a4. These
values were determined by binarising digital photographs of either
face of the sample, then normalising the output pixel area to the true
total area of the cylindrical cross-section. We calculate w3 and w4

on either side of the sample (note that they differ: Fig. 6), and use

Table 2
Values used for calculating arithmetic, geometric, and harmonic mean
permeabilities. k1 . . . k4 are permeabilities as indicated in Fig. 6. Along
with the values of k⊥ and k‖ , these have been taken from Farquharson
et al. (2016). w1 and w2 represent band thickness as shown in Fig. 6. a3

and a4 are cross-sectional areas of the bands represented by w3 and w4,
respectively, in Fig. 6. Refer to text for discussion.

Parameter Value Units

k1 1.37 × 10−14 m2

k2 2.90 × 10−16 m2

k3 1.05 × 10−14 m2

k4 6.24 × 10−16 m2

w1 19.93 ± 3.75 mm
w2 20.98 ± 3.75 mm
a3 96.30 ± 24.13 mm2

a4 218.01 ± 24.13 mm2

k⊥ 2.48 × 10−16 m2

k‖ 3.03 × 10−15 m2

the mean with an upper and lower bound (Table 2) for our subse-
quent calculations, with the standard deviation on that mean being a
component of the uncertainty. For calculations, each wi parameter in
Eqs. (9), (12), and (13) was substituted for ai, thereby translating
the averages into two dimensions rather than one (e.g. Heap and
Kennedy, 2016). All of the permeability data shown in Table 2 are
taken from Farquharson et al. (2016).

First, we shall look at the layered sample cored perpendicular
to layering, k⊥ (see Fig. 6A). Accounting for potential inaccura-
cies in layer (band) geometry, the values determined using Eqs.
(9), (12), and (13) are〈 kx〉 = 6.82 × 10−15 ± 1.23 × 10−15 m2,
〈kz〉 = 5.54 × 10−16 ±8.11 × 10−17 m2, and 〈kg〉 = 1.90 × 10−15 ±
5.64 × 10−16 m2, respectively. The true (measured) value is
k⊥ = 2.48 × 10−16 m2.

For the sample cored parallel to layering, k‖ (see Fig. 6B), we
obtain the following values for each of the averaging approaches
(Eqs. (9), (12), and (13)): 〈kx〉 = 3.65 × 10−15 ± 7.58 × 10−17 m2,
〈kz〉 = 8.77 × 10−16 ±8.07 × 10−17 m2, and 〈kg〉 = 1.48 × 10−15 ±
2.89 × 10−16 m2, respectively. The true (measured) value is:
k‖ = 3.03 × 10−15 m2.

These data are shown graphically in Fig. 7. In both cases, 〈kx〉 >
〈kg〉 > 〈kz〉, and there is no overlap between calculated values.
For the perpendicular sample, k⊥ is lower than any of the calcu-
lated values; however, the harmonic mean 〈kz〉 provides the closest
estimate, as predicted. The discrepancy between the measured and
calculated value here is perhaps due to variations in band thick-
ness inside the sample, thus not reflected in the measured values of
w1 and w2. For the parallel sample, k‖ is exactly within the range
calculated from the arithmetic mean, which—again—is consistent
with our predicted result. Notably, using an inappropriate averaging
method could yield results almost an order of magnitude away from
the true value. Moreover, it is clear that should the geometric aver-
aging method be employed in this instance, one might incorrectly
assume that k⊥ > k‖, which is evidently not the case. Nevertheless,
if the precise geometry and orientation of an anisotropic medium
is unknown, the geometric average may provide a reasonable com-
promise between the direction-specific arithmetic and harmonic
averages (provided the caveats mentioned previously are adhered to:
normal distribution and low variance of permeability).

7.3. Equivalent permeability at angles oblique to layering

We have used two end-members as a case study (banding is lay-
ered at p/2 and p (or 0) radians relative to the direction of fluid
flow). If the orientation of anisotropy occurs at angles between p/2
and p rad (i.e. neither perpendicular nor parallel to the direction of
fluid flow), the fluid flow properties become more complex. In such
a case, the principal directions of anisotropy no longer coincide with
the Cartesian xyz coordinate system, and we must use Eq. (19). The
relative importance of the highest and lowest permeability layers is
a function of the angle of anisotropy. Thus, steep-angle layering (ori-
entation close to p) will exhibit 〈k〉 close to 〈k‖〉 and shallow-angle
layering (orientation close to p/2) will 〈k〉 close to 〈k⊥〉. We give the
solution to Eq. (19) on Fig. 7A as the dashed line.

As another test of this result, we present data from Wright et
al. (2009) in Fig. 7B. Wright et al. (2009) measured a suite of sam-
ples cored from a single clast of anisotropic pumice from the Tumalo
volcanic centre (USA). Their samples were prepared such that they
were oriented at a range of orientations relative to bubble elongation.
Their value of 〈kz〉 = 3.4 × 10−13 m2 is the value perpendicular to
the orientation of the tube vesicles, whilst their value of 〈kx〉 = 2.9−
−3.0 × 10−11 m2 is the value parallel to the orientation of the tube
vesicles. With these inputs to Eq. (19), we can then compare every
data point collected for samples at intermediate angles relative to
the orientation of the tube vesicles. We find reasonable agreement
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Fig. 7. [A] Measured and calculated permeability for banded lava, plotted versus the
orientation of banding with respect to the sample axis. k⊥ and k‖ are given by the filled
symbols, and the empty symbols indicate the values of ki (Table 2). The range of val-
ues of the arithmetic, harmonic, and geometric means (based on the data in Table 2)
are shown by the error bars (note that the average measurement error for the experi-
mental data smaller than the size of the respective symbols: see Appendix B). Eq. (19)
is plotted using the measured values of 〈kx〉 and 〈kz〉. Refer to text for discussion. [B]
Data from Wright et al. (2009) for Tumalo tuff tube pumice (TT). Measurements were
made at a range of angles with respect to bubble elongation. Dashed line shows Eq.
(19), calculated using the data at 2p (〈kx〉) and p/2 rad (〈kz〉) from Wright et al. (2009).

with the function 〈k〉 = 〈kx〉sin2(h) + 〈kz〉cos2(h) (Eq. (19)). We note,
however, that oriented bubbles are not strictly the same geometry as
oriented layers discussed above. Nevertheless, these data serve as a
useful demonstration.

8. An application to volcanic rock with fracture networks

We have established and explored a range of possible tools to
scale from laboratory measurements on relatively homogeneous
materials, to larger systems that are composed of layers that can-
not usually be measured by laboratory methods, and which impart
an anisotropy of permeability to the whole system. Here we dis-
cuss a possible extensions to this scaling that we have not validated
explicitly, but which would be of interest for volcanic settings.

Fractures are pervasive in volcanic environments—from the
micro-scale to large fault structures and fissures (Varley and Taran,
2003; Tuffen and Dingwell, 2005; Gaunt et al., 2014)—and these
probably exert a dominant influence over the overall permeability of
a fracture-bearing volcanic rock (or magma) matrix. If we consider
fractures as planar features, then they can be thought of as a layer
like any other, with a constituent thickness, or width, wf and perme-
ability, kf. Standard results for Poiseuille flow in a fracture-geometry
can be rearranged with Darcy’s law to give the permeability of an
individual fracture (see Zimmerman and Bodvarsson, 1996):

kf = H
w2

f

12
(20)

where H is an empirical roughness factor, which is H = 1 for smooth
fractures (modified after Heap and Kennedy, 2016). This result can
be used as one of the constituent layer permeabilities in the anal-
ysis presented above to determine the average permeability of the
system. Treating a fractured mass as a two-component system (i.e. a
matrix of permeability km and a series of fractures with total width∑n

i=1 wfi ), Eqs. (9) and (12) become
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and
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where the components that refer to the matrix and fractures are
labelled. As with the previous examples, permeabilities at arbitrary
intermediate angles can then be calculated using Eq. (19). This is
illustrated in Fig. 8. Note that Eqs. (21) and (22) show

〈k〉 →
n∑

i=1

w2
fi

12
as

(
L −

n∑
i=1

wfi

)
→ 0 (23)

and

〈k〉 → km as
n∑

i=1

wfi → 0. (24)

More generally, 〈k〉 → ki as (L − wi) → 0.
Fig. 8A shows an outcrop at the dacitic Ceboruco lava dome

(Nayarit, Mexico). Highlighted is a 1 × 1 m area of dense lava con-
taining several nominally planar fractures oriented at an oblique
angle to vertical (with respect to the photograph and its current ori-
entation). We use this outcrop to demonstrate the importance of
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Fig. 8. Arithmetic and harmonic mean permeabilities of a fractured medium can be
determined if the number n and width wf of fractures within a homogeneous matrix
are known. [A] Photograph of part of the Ceboruco lava done (Mexico). Highlighted
box is 1 × 1 m. [B] Close-up of the selected area, which is then binarised [C] and sim-
plified [D] for the purposes of this analysis. [E]–[H] illustrate the different values of
h when considering equivalent permeability in different orientations. [E] Equivalent
permeability parallel to the fracture orientation is 〈kx〉 of the medium, and can be cal-
culated from Eq. (21). [F] Permeability along the horizontal plane. [G] Permeability
along the vertical plane. [H] Equivalent permeability perpendicular to the fracture ori-
entation is 〈kz〉 of the medium, and can be calculated from Eq. (22). Once 〈kx〉 and 〈kz〉
have been calculated, intermediate angles [F]–[G] can be determined using Eq. (19).
[I] shows the modelled results for 〈k〉 vs fracture angle.

fractures in governing the permeability of a large rock mass. The
fractured area is shown in more detail in Fig. 8B, which we binarise
(Fig. 8C) and further simplify (Fig. 8D) in order to estimate the frac-
ture widths. Of n = 8 fractures, fracture widths range from 0.03
to 0.07 m. From Eq. (20), these widths reflect permeabilities rang-
ing from 7.50 × 10−5 and 4.08 × 10−4 m2. If we assume that the
host rock has a permeability of 10−21 m2, then we can calculate the
values of 〈kx〉 (Fig. 8E) and 〈kz〉 (Fig. 8H) after Eqs. (21) and (22),
respectively. Similarly, Eq. (19) can be employed to determine the

permeability at oblique angles h = p/6 rad (Fig. 8F) and h = p/3
rad (Fig. 8G). For this simple example, 〈kx〉 = 6.18 × 10−5 m2,
highlighting the important influence of fractures in controlling
fracture-parallel fluid flow. Perpendicular to the fracture orientation,
〈kz〉 = 1.49 × 10−21 m2: only marginally higher than the permeabil-
ity of the matrix km. The equivalent permeability calculated in the
horizontal (h = p/6 rad) and vertical (h = p/3 rad) directions are
4.63 × 10−5 and 1.54 × 10−5 m2, respectively. Critically, these are
evidently much closer to 〈kx〉 than 〈kz〉: a fact that should be borne in
mind when measuring laboratory-scale samples.

Certainly, this rudimentary example does not reflect a number
of components of the natural system. The fracture aperture is rarely
constant along the length of a fracture (i.e. H �= 1), even in the vastly
simplified example above. In a recent study, Heap and Kennedy
(2016) calculated fracture permeabilities in samples of andesite to
be on the order of 10−10–10−9 m2 for their sample size (on the order
of 0.02 m), which highlights that the idealised geometry assumed by
Eq. (20) does not capture the complexities of variably tortuous, non-
planar fractures. Note that if we were to scale the example above
to reflect the sample size of Heap and Kennedy (2016) (i.e. with the
same ratio wfi/L but over a smaller length scale), then a value of H
around 0.01 would be sufficient to bring the fracture permeabilities
calculated using Eq. (20) in line with their experimentally-derived
range. Additionally, this analysis has only accounted for the surface
expression of the fractures, whereas a more in-depth assessment
of the permeability of the dome would require some assumption
of the internal fracture architecture of the rock mass, and how this
changes with depth (i.e. confining pressure). Nevertheless, this anal-
ysis emphasises the significant contribution of fractures to fluid
flow in otherwise low-permeability volcanic material, something
that is not necessarily reflected in laboratory-based studies. Given
the proliferation of permeability data collected for volcanic mate-
rials in recent years, incorporating them into models that reflect
the natural anisotropy extant in volcanic systems ought to become
commonplace. We anticipate that the relatively simple formulations
described throughout this study can prove to be useful tools to this
end.

9. Concluding remarks

Using laboratory measurements on two suites of anisotropic
volcanic rocks, we have demonstrated two fundamental points to
account for when considering permeability in anisotropic volcanic
systems.

1. First, whenever a layered medium contains layers with differ-
ent permeabilities, the permeability parallel to layering will
always be higher than that measured perpendicular.

2. Secondly, the choice of averaging method used to upscale
permeability data is of great importance. Our data highlight
that employing an inappropriate upscaling approach can result
in data that are erroneous by almost an order of magnitude
(for the samples tested in this study). Significantly, using an
inappropriate averaging method can result in values that are
contrary to point 1.

We have highlighted scenarios where a volcano could be mod-
elled as a vertically or horizontally layered medium (in two dimen-
sions) or layered disks or an annular concentric medium (in three
dimensions), depending on the variables under consideration. As
shown both by theory and our data, the averaging method used to
estimate equivalent permeability—an imperative step for transfer-
ring permeability from the laboratory- to model-scale—can exert a
significant influence on the ultimate values derived. As an additional
step, we have accounted for any oblique angle of fluid flow relative
to the layering in the large rock mass, and validated this against our
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data and data for tube pumices compiled from Wright et al. (2009).
Finally, we also provide solutions to calculate estimate equivalent
permeability of a fractured rock mass at all angles relative to the
planar fracture direction, assuming that the matrix permeability is
known. In concert, these results provide tools to upscale from suites
of measurements collected using individual rock samples, to larger
systems composed of layers with or without fractures.

We urge that future models that include edifice and/or conduit
permeability as a variable account for the potential for significant
permeability anisotropy in these systems. Moreover, we recommend
that the simple formulations described herein be used to transfer the
wealth of laboratory data collected on volcanic media to scales that
are relevant for edifice-scale modelling.
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Appendix A. Arithmetic mean is always greater than the
harmonic mean in an anisotropic medium: proof

This appendix outlines a proof of the assertion that the arith-
metic mean of a set of values (such as permeability measurements) is
always greater than the harmonic mean of the same set. For a more
comprehensive proof, please refer to Binmore (1982).

We may define the arithmetic mean 〈x〉 of a set of measurements
or observations x1, x2, x3, . . . , xn as

〈x〉 =
1
n

(
n∑

i=1

xi

)
(A.1)

as long as the observations are positive real numbers (i.e.
x1, x2, x3, . . . , xn ∈ R>0). The harmonic mean 〈z〉 may be cast as

1
〈z〉 =

1
n

(
n∑

i=1

1
xi

)
(A.2)

for all values of i that are positive real numbers (∀i ∈ [1 . . . n] :
xi > 0). Fundamentally, these expressions (Eqs. (A.1) and (A.2) are
the same as Eqs. (9) and (12). The corollary of the positive real num-
bers caveat is that both 〈x〉 and 〈z〉 may be expressed as a squared
quantity:

∀i ∈ [1 . . . n] : xi = y2
i . (A.3)

This gives us

〈x〉 =
1
n

(
n∑

i=1

y2
i

)
and

1
〈z〉 =

1
n

(
n∑

i=1

1
y2

i

)
(A.4)

If we multiply these two expressions together:

〈x〉 × 1
〈z〉 =

〈x〉
〈z〉 =

1
n2

(
n∑

i=1

yi

n∑
i=1

1
yi

)2

(A.5)

Cauchy’s inequality (in vector form: ‖a‖‖b‖≥‖a • b‖) tells us that

1
n2

(
n∑

i=1

yi

n∑
i=1

1
yi

)2

≥ 1
n2

(
n∑

i=1

yi

yi

)2

(A.6)

The right-hand-side reduces to unity, giving

〈x〉
〈z〉 ≥ 1 (A.7)

and finally

〈x〉 ≥ 〈z〉. (A.8)

As the equality of 〈x〉 = 〈z〉 (in the context of a permeable system
〈kx〉 = 〈kz〉) requires a homogenous system, we can thus state that
for any anisotropic system, 〈kx〉 > 〈kz〉.

Appendix B. Determination of Darcian permeability at moderate
Reynolds number or using compressible gas as the permeating
fluid

When using a compressible gas as the permeant fluid, it
becomes convenient to present permeability measured under near-
atmospheric conditions in the form (Klinkenberg, 1941; McPhee and
Arthur, 1991)

kgas =
QlL • patm

A •Dpp̄
. (B.1)

Functionally the same as Eq. (1), the above form describes the
driving force for flow in terms of a driving pressure Dpp̄ and a
downstream pressure (which in our case is atmospheric pressure
patm) at which Q is measured. The mean pressure p̄ is a function of
the upstream and downstream pressures pb and pa (as described in
Farquharson et al., 2017a). We measured gas permeability using a
modified steady-state benchtop permeameter as described in (Heap
and Kennedy, 2016; Farquharson et al., 2016). Using nitrogen, a radial
confining pressure of 1 MPa was applied to each sample; gas flow was
induced through the sample after a suitable equilibration time using
a pressure regulator connected to a cylinder of compressed gas. For
different imposed pressure differentials Dp (measured using a pres-
sure gauge connected inline upstream of the sample), the volumetric
flow rate Q was measured with an El-Flow volumetric flowmeter
and recorded with a purpose-built data acquisition system. With
knowledge of the constants in Eq. (B.1) (i.e. sample dimensions,
atmospheric pressure downstream of the sample, gas viscosity), kgas

could then be calculated, assuming laminar flow. On a graph of Q
versus Dpp̄ (the driving pressure), data should follow a linear trend
(in the case of laminar flow): as such, the r2 value of a straight line
fit through (Q, Dpp̄) pairs for each sample gives an assessment of the
average measurement error (a function of finite transducer resolu-
tion and fluctuations in ambient conditions). We arbitrarily impose
an threshold of r2 = 0.99, meaning that calculations are only made
from precise data. Ultimately this results in maximum uncertainties
of ±1% for our permeability data (note that in most cases, r2 � 0.99).
This is typically much smaller than the symbol size when plotted
graphically. However, in these high-porosity pumice samples, iner-
tial forces were high (flow was turbulent). As a result, the “true”
permeability is lower than the apparent (measured) permeability,
as turbulence induces drag. As such, an auxiliary correction was
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required. The so-called Forchheimer correction, after Forchheimer
(1901) introduces an inertial term i, such that

1
kFo

=
1

kgas
− iQ (B.2)

where kFo is the Forchheimer-corrected permeability value, and kgas

is the as-measured value (using gas). This correction is described
more fully in Farquharson et al. (2017a). Note that in the case of
turbulent flow, the graph of volumetric flow rate versus driving
pressure would not be linear. However, a plot of the reciprocal of
measured permeability k−1

gas against Q will be linear in the absence of
additional compounding factors. We impose the same r2 threshold
to these data, obtaining the same average measurement error.
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